

Fig. 3. Numérotation des atomes, distances intramoléculaires (\AA) et angles de valence (${ }^{\circ}$), σ moyens respectivement de $0,006 \AA$ et de $0,4^{\circ}$ pour les atomes C, N et O et de $0,04 \AA$ et 2° pour les atomes H participant aux liaisons hydrogène.

Références

Baer, T. A. \& Mertes, M. P. (1973). J. Med. Chem. 16, 85-87.
Cotrait, M. \& Barrans, Y. (1974). Acta Cryst. B30, 1018-1023.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-375.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
$X-R A Y$ System (1972). Version of June 1972. Technical Report TR-192 of the Computer Science Center, Univ. of Maryland.

Crystal Structure of $\mathbf{C s}_{3} \mathbf{M n C l}_{5}$

By J. Goodyear and D.J. Kennedy
Physics Department, The University, Hull HU6 7RX, England

(Received 11 November 1974; accepted 4 October 1975)

Abstract. $\mathrm{Cs}_{3} \mathrm{MnCl}_{5}$: tetragonal, $I 4 / \mathrm{mcm}, a=b=9 \cdot 21$ (2), $c=14.97$ (5) $\AA, Z=4, D_{o}=3 \cdot 35, D_{x}=3.30 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure is isomorphous with that of $\mathrm{Cs}_{3} \mathrm{CoCl}_{5}$.

Introduction. The material was prepared by heating stoichiometric amounts of CsCl and MnCl_{2} in an evacuated sealed silica tube until molten and then cooling to room temperature at about $5^{\circ} / \mathrm{h}$. Greenish-yellow crystals were formed which were of suitable size for

Weissenberg photography. The crystals were very hygroscopic and had to be mounted in sealed Lindemann glass tubes for X-ray examination.

A prismatic crystal $(0.16 \times 0.14 \times 0.65 \mathrm{~mm})$ was selected for intensity measurements. Data were collected from equi-inclination Weissenberg photographs taken about the elongated axis of the crystal with Mo $K \alpha$ radiation ($\mu=106.7 \mathrm{~cm}^{-1}$). The intensities of 324 reflexions on layer lines $0-4$ were measured with a

Joyce-Loebl flying-spot microdensitometer; 166 reflexions were unobserved. The data were corrected with the Lorentz-polarization factor and for absorption using the factors given by Bond (1959) for a cylindrical specimen.

The cell dimensions were determined from $\alpha_{1}-\alpha_{2}$ doublet separations on zero-layer Weissenberg photographs taken with $\mathrm{Cu} K \alpha$ radiation $\left[\lambda\left(\alpha_{1}\right)=1 \cdot 54051 \AA\right.$] and it was then evident that the crystal axis was along the body diagonal of a reduced orthorhombic cell whose a and b parameters were equal to within one standard deviation. The indices of the reflexions were transformed to correspond to the new cell; the systematic absences were then $h+k+l=2 n+1$ for all reflexions and $l=2 n+1$ for $0 k l$, and for tetragonal symmetry 221 of the observed reflexions were found to be independent.

Initially the structure was assumed to be isomorphous with that of $\mathrm{Cs}_{3} \mathrm{CoCl}_{5}, I 4 / \mathrm{mcm}$ (Powell \& Wells, 1935), but a block-diagonal least-squares refinement reduced the residual, $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$, to only 33%. Attempts at refinement in other possible tetragonal space groups did not lead to any greater success. Refinement was then tried in the orthorhombic space group Ibam and R now reduced to 11.0%. The final parameters, however, all lay within one standard deviation of those which would correspond to the tetragonal space group $I 4 / \mathrm{mcm}$. The failure to refine the structure in the tetragonal system was later found to be due to a program error. When this was corrected, refinement in the space group $14 / \mathrm{mcm}$ was possible and several cycles led to a final reridual of 9.6% with final shifts in all the parameters of less than $\frac{1}{15}$ of a standard deviation. Atomic scattering factors for $\mathrm{Cs}^{+}, \mathrm{Mn}^{2+}$ and Cl^{-}used in the structure factor calculations were taken from International Tables for X-ray Crystallography (1962). The final atomic parameters are given in Table 1 and selected bond lengths are listed in Table 2.*

Discussion. The analysis forms part of an investigation of the crystal structures of the compounds in the system $\mathrm{CsCl} / \mathrm{MnCl}_{2}$. On the evidence of powder data, Andersen (1956) proposed a tetragonal cell for $\mathrm{Cs}_{3} \mathrm{MnCl}_{5}$ with $a=9.21, c=14.90 \AA$ and assumed the structure

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publicacation No. SUP 31427 (3 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Final atomic parameters (origin at $4 / m$)

Equipoint				x	y
$\mathrm{Cs}(1)$	$4 a$	0	0	z	$B\left(\AA^{2}\right)$
$\mathrm{Cs}(2)$	$8 h$	$0.1643(10)$	$0.6643(10)$	0	0
Mn	$4 b$	0	$\frac{1}{2}$	$2.62(27)$	
$\mathrm{Cl}(1)$	$4 c$	0	0	$\frac{1}{4}$	$1.77(14)$
$\mathrm{Cl}(2)$	$16 l$	$0.1430(30)$	$0.6430(30)$	$0.6546(27)$	$1.74(55)$
				$0.52(55)$	

Table 2. Selected bond lengths (\AA)

to be isomorphous with that proposed by Powell \& Wells for $\mathrm{Cs}_{3} \mathrm{CoCl}_{5}$. The present work has confirmed this.

In the structure the $\mathrm{Cl}(2)$ ions coordinate the Mn ions to form individual $\mathrm{Mn}-\mathrm{Cl}_{4}$ tetrahedra and the structure can be considered as being composed of Cs^{+}, $\left[\mathrm{Mn}-\mathrm{Cl}(2)_{4}\right]^{2-}$ and $\mathrm{Cl}(1)^{-}$ions. The $\mathrm{Mn}-\mathrm{Cl}_{4}$ tetrahedron is somewhat distorted, the $\mathrm{Cl}-\mathrm{Mn}-\mathrm{Cl}$ angles ranging from 105 to 112°. The average $\mathrm{Cs}(1)-\mathrm{Cl}$ distance $(3.80 \AA)$ is a little greater than and the average $\mathrm{Cs}(2)-\mathrm{Cl}$ distance $(3.55 \AA)$ is a little smaller than the average length of the $\mathrm{Cs}-\mathrm{Cl}$ bond $(3.72 \AA)$ found in the structure of $\mathrm{CsMn}_{4} \mathrm{Cl}_{9}$ (Goodyear \& Kennedy, 1973).

We thank Drs C. H. Morgan and H. H. Sutherland for permitting us to use their least-squares program and the Science Research Council for a grant to purchase a flying-spot microdensitometer.

References

Andersen, P. (1956). Nord. Kem. 9, 7.
Bond, W. L. (1959). Acta Cryst. 12, 375-381.
Goodyear, J. \& Kennedy, D. J. (1973). Acta Cryst. B29, 2677-2680.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Powell, H. M. \& Wells, A. F. (1935). J. Chem. Soc. pp. 359-362.

